Visit Trail

Key Stage 3 & 4

Links with National Curriculum - MA3 Shape, space and measures, Ma2 Numbers and the number system **Links with NNS** - Ordering and counting

Planet Maths Trail

Name:		School:
Date:		

Go to the **Our Solar System** gallery

Question 1

Complete the table to analyse the planets. Be careful about the 'units'.

Hint: Hours, days or years?

Planet	Diameter km	Distance to Sun 10 ⁶ km	Day Length (in hours)	Orbit Length
Mercury	4,878		58.7 days	
	12,102	108		
Earth			24 hours	365.25 days
	6,787			
		778		
Saturn	120, 000		10.25 hours	
		2, 868		84 years
Neptune	50, 000			

Question 2

Plot the Orbital Period of the planets. Decide if you require a bar or line graph. Separate the planets into rocky planets and gas giants.

Rocky Planets

Gas Giants

Question 3

Look at the 'diameter' column on your planets table.

You need to calculate the circumference of each planet using the following equation:

 $C=\pi$

C = Circumference $\mathcal{T} = 3.142$ D = Diameter

Using the circumference you have calculated, look at the 'day length' column.

Calculate how fast each planet is spinning in km/h (kilometres per hour).

You need to divide the circumference by the day length.

Planet	Circumference km	Rotational Speed km/h
Mercury		
Venus		
Earth		
Mars		
Jupiter		
Saturn		
Uranus		
Neptune		