Key Stage 3 \& 4

Links with National Curriculum - MA3 Shape, space and measures, Ma2 Numbers and the number system Links with NNS - Ordering and counting

Plonet Maths Trail

Name: \square School: \square

Date: \square

Go to the Our Solar System gallery

Question 1

Complete the table to analyse the planets. Be careful about the 'units'.
Hint: Hours, days or years?

Planet	Diameter km	Distance to Sun $10^{6} \mathrm{~km}$	Day Length (in hours)	Orbit Length
Mercury	4,878		58.7 days	
	12,102	108		
Earth			24 hours	365.25 days
	6,787			
Saturn	120,000		10.25 hours	
		2,868		84 years
Neptune	50,000			

Question 2

Plot the Orbital Period of the planets. Decide if you require a bar or line graph. Separate the planets into rocky planets and gas giants.

Rocky Planets

Visit Trail - Planet Maths Trail

Question 3

Look at the 'diameter' column on your planets table.
You need to calculate the circumference of each planet using the following equation:

$$
C=\pi D
$$

$$
\begin{gathered}
\text { c = Circumference } \\
\pi=3.142 \\
\mathrm{D}=\text { Diameter }
\end{gathered}
$$

Using the circumference you have calculated, look at the 'day length' column. Calculate how fast each planet is spinning in km/h (kilometres per hour). You need to divide the circumference by the day length.

Planet	Circumference km	Rotational Speed km / h
Mercury		
Venus		
Earth		
Mars		
Jupiter		
Saturn		
Uranus		
Neptune		

